
Elemeno AI SDK Documentation

elemeno.ai

Jan 05, 2024

CONTENTS:

1 Getting Started 1
1.1 Overview . 1

1.1.1 First Steps . 1
1.1.2 Configuration file schema . 2
1.1.3 Next Steps . 4

2 Authentication Utils 7
2.1 Overview . 7
2.2 Google Cloud . 7
2.3 AWS . 8

3 Model Conversion 9
3.1 Overview . 9
3.2 Reference . 9

4 Indices and tables 11

i

ii

CHAPTER

ONE

GETTING STARTED

1.1 Overview

Elemeno AI SDK is the one stop shop for all the elements needed to build your own AI engine.

It includes helpers to use the Elemeno AI operating system, and supports both Elemeno Serverless AI and local instal-
lations.

Current features available in the SDK:

• Feature Store Management

• Data Ingestion

– Big Query Datasource

– Redshift Datasource

– Elasticsearch Datasource

– Pandas DF Datasource

• Training Data Reading

• Inference Data Reading

• ML Frameworks Conversion to ONNX

– Scikit-learn

– Tensorflow

– Pytorch

– Tensorflow-Lite

• Authentication Utils

1.1.1 First Steps

The first step is to install the SDK module via pip.

pip install elemeno-ai-sdk

You then run the command :code mlops init and follow the steps in the terminal to configure your MLOps environment.

That’s all.

1

Elemeno AI SDK Documentation

(optional) If you intend to leave the configuration files in a location different from the default, set the environment
variable below.

export ELEMENO_CFG_FILE=<path to config directory>

1.1.2 Configuration file schema

A configuration file named elemeno.yaml is expected to be present in the root of the project (or where the variable
ELEMENO_CFG_FILE points to).

The file has the following structure:

Table 1: Config File Structure
Field Type Example Description
app object The general application configuration
app.mode string development The execution mode, use development for

local development and production when do-
ing an oficial run.

cos object The S3-like Cloud Object Storage configu-
ration. This is where your artifacts will be
persisted. The bucket with name elemeno-
cos should exist.

cos.host string http://minio.example.com:9000 The host of the cloud object storage server.
cos.key_id string AKIAIOSFODNN7EXAMPLE The access key id for the cloud object storage

server.
cos.secret string wJalrXUtn-

FEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
The secret access key for the cloud object
storage server.

cos.use_ssl boolean true Whether to use SSL or not.
cos.bucket_name string elemeno-cos The name of the bucket to store binary files.
registry object The model registry configuration. Currently

Elemeno supports MLFlow as registry.
reg-
istry.tracking_url

string http://mlflow.tracking.url:80 The MLFlow tracking server url.

feature_store object The feature store configuration. Currently
Elemeno supports Feast as feature store.

fea-
ture_store.feast_config_path

string . The path to the Feast configuration file.

fea-
ture_store.registry

string s3://elemeno-
cos/example_registry

The path in the cloud object storage to keep
the metadata of the feature store.

fea-
ture_store.sink

object The sink configuration. Currently Elemeno
supports Redshift and BigQuery as sink.

fea-
ture_store.sink.type

string Redshift The type of the sink.

fea-
ture_store.sink.params

object The parameters of the sink.

fea-
ture_store.sink.params.user

string elemeno The user name for the Redshift database.

fea-
ture_store.sink.params.password

string ${oc.env:REDSHIFT_PASSWORD,elemeno}The password for the Redshift database.

fea-
ture_store.sink.params.host

string cluster.host.on.aws The host of the Redshift database cluster.

continues on next page

2 Chapter 1. Getting Started

http://minio.example.com:9000
http://mlflow.tracking.url:80

Elemeno AI SDK Documentation

Table 1 – continued from previous page
Field Type Example Description
fea-
ture_store.sink.params.port

integer 5439 The port of the Redshift database cluster.

fea-
ture_store.sink.params.database

string elemeno The name of the Redshift database schema.

fea-
ture_store.source

object The data source configuration. Currently El-
emeno supports Elasticsearch, Pandas, Red-
shift and BigQuery as source.

fea-
ture_store.source.type

string BigQuery The type of the data source. Valid values are
BigQuery, Elastic and Redshift

fea-
ture_store.source.params
(When using
Elastic as
source)

object The parameters of the data source.

fea-
ture_store.source.params.host

string localhost:9200 The host of the Elasticsearch server.

fea-
ture_store.source.params.user

string elemeno The user name for the Elasticsearch server.

fea-
ture_store.source.params.password

string ${oc.env:ELASTIC_PASSWORD,elemeno}The password for the Elasticsearch server.

fea-
ture_store.source.params
(When using
Redshift as
source)

object The parameters of the Redshift data source.

fea-
ture_store.source.params.cluster_name

string elemeno The name of the Redshift cluster on AWS.
When this parameter is specified the SDK
uses IAM-based authentication, therefore
it’s not needed to specify host, port, user and
password

fea-
ture_store.source.params.user

string elemeno The user name for the Redshift database.

fea-
ture_store.source.params.password

string ${oc.env:REDSHIFT_PASSWORD,elemeno}The password for the Redshift database.

fea-
ture_store.source.params.host

string cluster.host.on.aws The host of the Redshift database cluster.

fea-
ture_store.source.params.port

integer 5439 The port of the Redshift database cluster.

fea-
ture_store.source.params.database

string elemeno The name of the Redshift database schema.

fea-
ture_store.source.params
(When using
BigQuery as
source)

object The parameters of the data BigQuery source.

fea-
ture_store.source.params.project_id

string elemeno The project id of the BigQuery project.

1.1. Overview 3

Elemeno AI SDK Documentation

1.1.3 Next Steps

Feature Store

Getting Started

The feature store is a powerful tool for ML practitioners. It abstracts away many of the complexities involved in the
data engineering architecture to support both training and inference time.

Through this class, you can interact with Elemeno feature store from your notebooks and applications.

Here is a simple example of how to create a feature table in the feature store:

feature_store = FeatureStore(sink_type=IngestionSinkType.REDSHIFT, connection_
→˓string=conn_str)
feature_table = FeatureTable("my_test_table", feature_store)

feature_store.ingest_schema(feature_table, "path_to_schema.json")

In the above snippet we did a few things that are necessary to start using the feature store.

1. We instantiated the FeatureStore object, specifying which type of sink we want to use. Sinks is the terminology
used by the feature store to refer to the different types of data stores that it supports.

2. We instantiated a FeatureTable object, which is a wrapper around the feature store table.

3. We ingested the schema for the feature table using the ingest_schema method.

Ingesting Features

Once you have created a feature table, you can start ingesting features into it. The feature store supports two types of
ingestion: batch and streaming (WIP).

Let’s imagine you have your own feature engineering pipeline that produces a set of features for a given entity. You can
use the feature store to ingest these features into the feature store.

this is a pandas dataframe
df = my_own_feature_engineering_pipeline()

fs.ingest(feature_table, df)

That’s all that’s needed. There are some extra options you can pass to the ingest method, but this is the simplest way to
ingest features into the feature store.

Reading Features

Once you have ingested features into the feature store, you can start reading them. The feature store supports two types
of reads: batch and online.

The batch read is what you will usually need during training. It allows you to read a set of features for a given entity
over a given time range.

the result is a pandas dataframe
training_df = fs.get_training_features(feature_table, date_from="2023-01-01", date_to=
→˓"2023-01-31", limit=5000)

4 Chapter 1. Getting Started

Elemeno AI SDK Documentation

For the online read, you can use the get_online_features method. This method will return an OnlineResponse object
of features for a given entity. This type of object has a to_dict method that can be used to convert the features into a
dictionary.

entities = [{"user_id": "1234"},{"user_id": "5678"}]

the result is an OnlineResponse object, with all the features associated with the␣
→˓given entities
features = fs.get_online_features(entities)

Reference

Feature Store Sink

The concept of a Sink is a way to store the output of a feature.

Reference

Feature Store Source

The concept of a Source is how we read data from a lake of data that not necessary contain ML friendly features.

Reference

1.1. Overview 5

Elemeno AI SDK Documentation

6 Chapter 1. Getting Started

CHAPTER

TWO

AUTHENTICATION UTILS

2.1 Overview

Often times, specially when dealing with the first steps of data engineering, you may need to connect to different
services in the cloud. We build this module to help you streamline the process of authenticating with some of these
services.

2.2 Google Cloud

There are a few ways to authenticate with Google Cloud SDK. The most common, is to use a service account file and
specify its location in the environment variable GOOGLE_APPLICATION_CREDENTIALS. However, we understand
this type of authentication requires some overhead to be handled in a secure way, specially if you’re not in an one-person
project.

For development time, you can use API-based authentication tokens through the google appflow package. Hence using
service accounts only for production environments.

By using the Authenticator class, you can easily just call authentication, and depending on the existence of a
configuration in the elemeno config yaml. The value of the config app.mode is what switches the behavior of
what the authenticator class will use. When development, it will use appflow (user credentials based) authenti-
cation. When production it will use the service account file or the API-based authentication tokens specified in
GOOGLE_APPLICATION_CREDENTIALS.

from elemeno_ai_sdk.datasources.gcp.google_auth import Authenticator
auth = Authenticator()
credentials = auth.get_credentials()

The credentials variable can then be passed around on google-sdk methods.

In order to configure different values to the authenticator, edit the following section of the file elemeno.yaml

...
gcp:
sa:
file: /tmp/gcp-credentials.json

appflow:
client_secret:
file: /tmp/client_secrets.json

scopes:
- 'https://www.googleapis.com/auth/bigquery'

...

7

Elemeno AI SDK Documentation

If you need help generating the client_secrets.json file, see Google documentation.

2.3 AWS

For AWS we recommend you use IAM authentication when possible. If you’re running your workloads in Elemeno
MLOps cloud, there’s an option to generate IAM credentials for AWS integration, and then you can use that arn to
allow necessary permissions on your account.

If using the opensource version of Elemeno, you can use the IAM roles for service accounts approach. Learn more

An easier setup would be to just use the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment
variables. Or even the ~.aws/credentials file.

8 Chapter 2. Authentication Utils

https://cloud.google.com/bigquery/docs/authentication/end-user-installed#manually-creating-credentials
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

CHAPTER

THREE

MODEL CONVERSION

3.1 Overview

In order to deploy your ML models you usually need to first serialize them to a format that can be consumed by the
ML service. At Elemeno ML Ops, we currently support native deployments of Tensorflow (and TFLite), Pytorch,
Scikit-learn and Keras.

However, if you’re looking for the maximum performance optimization, we have built a base server in GoLang, that is
able to respond inference requests in very few ms of latency.

For users looking to deploy using Elemeno MLOps optimized server you will need to first convert your binary model
to the open standard ONNX . Check below the SDK components that will help you on doing a frictionless conversion.

3.2 Reference

9

https://onnx.ai

Elemeno AI SDK Documentation

10 Chapter 3. Model Conversion

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11

	Getting Started
	Overview
	First Steps
	Configuration file schema
	Next Steps
	Feature Store
	Getting Started
	Ingesting Features
	Reading Features
	Reference
	Feature Store Sink
	Reference
	Feature Store Source
	Reference

	Authentication Utils
	Overview
	Google Cloud
	AWS

	Model Conversion
	Overview
	Reference

	Indices and tables

